3.156 \(\int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=67 \[ \frac {8 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[Out]

4*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/3*a^2*(cos(1/2
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a^2*sin(d*x+c)*cos(d*x+c)^
(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2757, 2641, 2639, 2635} \[ \frac {8 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^2/Sqrt[Cos[c + d*x]],x]

[Out]

(4*a^2*EllipticE[(c + d*x)/2, 2])/d + (8*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*Sqrt[Cos[c + d*x]]*Sin[
c + d*x])/(3*d)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \frac {(a+a \cos (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx &=\int \left (\frac {a^2}{\sqrt {\cos (c+d x)}}+2 a^2 \sqrt {\cos (c+d x)}+a^2 \cos ^{\frac {3}{2}}(c+d x)\right ) \, dx\\ &=a^2 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+a^2 \int \cos ^{\frac {3}{2}}(c+d x) \, dx+\left (2 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{3} a^2 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 5.11, size = 224, normalized size = 3.34 \[ \frac {a^2 (\cos (c+d x)+1)^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (-6 \cos (c) \sqrt {\sec ^2(c)} \sqrt {\sin ^2\left (\tan ^{-1}(\tan (c))+d x\right )} \csc \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )-8 \sin (c) \sqrt {\csc ^2(c)} \cos (c+d x) \sqrt {\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )+2 \cos (c+d x) (\sin (c+d x)-6 \cot (c))+\frac {3 \csc (c) \sec (c) \left (3 \cos \left (c-\tan ^{-1}(\tan (c))-d x\right )+\cos \left (c+\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt {\sec ^2(c)}}\right )}{12 d \sqrt {\cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Cos[c + d*x])^2/Sqrt[Cos[c + d*x]],x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*((3*(3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c
]]])*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 8*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hypergeom
etricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + 2*Cos[c + d*x]*(-6
*Cot[c] + Sin[c + d*x]) - 6*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x +
ArcTan[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(12*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 2.03, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}{\sqrt {\cos \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.48, size = 228, normalized size = 3.40 \[ -\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x)

[Out]

-4/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+2*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-sin(1/2*d*x+1/2*c)
^2*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+
1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 0.68, size = 59, normalized size = 0.88 \[ \frac {4\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {8\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^2/cos(c + d*x)^(1/2),x)

[Out]

(4*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (8*a^2*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (2*a^2*cos(c + d*x)^(1/2)*
sin(c + d*x))/(3*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________